Notch pathway activation targets AML-initiating cell homeostasis and differentiation

نویسندگان

  • Camille Lobry
  • Panagiotis Ntziachristos
  • Delphine Ndiaye-Lobry
  • Philmo Oh
  • Luisa Cimmino
  • Nan Zhu
  • Elisa Araldi
  • Wenhuo Hu
  • Jacquelyn Freund
  • Omar Abdel-Wahab
  • Sherif Ibrahim
  • Dimitris Skokos
  • Scott A. Armstrong
  • Ross L. Levine
  • Christopher Y. Park
  • Iannis Aifantis
چکیده

Notch signaling pathway activation is known to contribute to the pathogenesis of a spectrum of human malignancies, including T cell leukemia. However, recent studies have implicated the Notch pathway as a tumor suppressor in myeloproliferative neoplasms and several solid tumors. Here we report a novel tumor suppressor role for Notch signaling in acute myeloid leukemia (AML) and demonstrate that Notch pathway activation could represent a therapeutic strategy in this disease. We show that Notch signaling is silenced in human AML samples, as well as in AML-initiating cells in an animal model of the disease. In vivo activation of Notch signaling using genetic Notch gain of function models or in vitro using synthetic Notch ligand induces rapid cell cycle arrest, differentiation, and apoptosis of AML-initiating cells. Moreover, we demonstrate that Notch inactivation cooperates in vivo with loss of the myeloid tumor suppressor Tet2 to induce AML-like disease. These data demonstrate a novel tumor suppressor role for Notch signaling in AML and elucidate the potential therapeutic use of Notch receptor agonists in the treatment of this devastating leukemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch activation inhibits AML growth and survival: a potential therapeutic approach

Although aberrant Notch activation contributes to leukemogenesis in T cells, its role in acute myelogenous leukemia (AML) remains unclear. Here, we report that human AML samples have robust expression of Notch receptors; however, Notch receptor activation and expression of downstream Notch targets are remarkably low, suggesting that Notch is present but not constitutively activated in human AML...

متن کامل

Down-regulation of Notch-1 expression decreases PU.1-mediated myeloid differentiation signaling in acute myeloid leukemia.

The Notch receptor-mediated signaling pathways control cell fate in many types of organisms including neurogenesis, myogenesis and hematopoiesis in mammalian species. During normal hematopoiesis, Notch-1 promotes myeloid differentiation through up-regulation of the transcriptional factor PU.1. We therefore speculated that down-regulation of Notch-1 expression might be involved in the leukemogen...

متن کامل

Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation.

The activation and differentiation of T cells are dependent upon numerous initiating events that are influenced by the immune environment, nature of the Ag, as well as the activation state of APCs. In the present studies we have investigated the role of a specific notch ligand, delta-like 4 (Dll4). In particular, our data have indicated that Dll4 is inducible by pathogen-associated signals thro...

متن کامل

The dual nature of Notch in tissue homeostasis and carcinogenesis

The Notch pathway is an evolutionarily conserved signaling system that plays a critical pleiotropic role in regulating stem cell self-renewal and differentiation. The functional outcome of Notch signaling is highly dependent on cellular context and signal dosage. For example, distinct levels of Notch activity can either promote or suppress proliferation of mammary gland epithelial cells. In add...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2013